News & Commentaries

Forsyth Researchers Demonstrate How Changing the Stem Cell Response to Inflammation May Reverse Periodontal Disease

Stembook: Forsyth Researchers Demonstrate How Changing the Stem Cell Response to Inflammation May Reverse Periodontal Disease

Cambridge, MA, USA – Periodontal disease, also known as gum disease, is a serious infection that affects nearly 50 percent of Americans aged 30 years and older. If left unchecked, periodontal disease can destroy the jawbone and lead to tooth loss. The disease is also associated with higher risk of diabetes and cardiovascular disease.

Exosome Treatment Improves Recovery from Heart Attacks in a Preclinical Study

Stembook: Exosome Treatment Improves Recovery from Heart Attacks in a Preclinical Study

Birmingham, AL, USA – Science has long known that recovery from experimental heart attacks is improved by injection of a mixture of heart muscle cells, endothelial cells and smooth muscle cells, yet results have been limited by poor engraftment and retention, and researchers worry about potential tumorigenesis and heart arrhythmia.

Fine-tuning Stem Cell Metabolism Prevents Hair Loss

Stembook: Fine-tuning Stem Cell Metabolism Prevents Hair Loss
An international research team has shown in mice that Rictor, a protein that helps to regulate the growth, energy, and oxygen consumption of cells, plays a key role in the cellular metabolism and longevity of hair follicle stem cells.

Cologne, Germany – A team of researchers from Cologne and Helsinki has discovered a mechanism that prevents hair loss: hair follicle stem cells, essential for hair to regrow, can prolong their life by switching their metabolic state in response to low oxygen concentration in the tissue. The team was led by Associate Professor Sara Wickström (University of Helsinki and Max Planck Institute for the Biology of Ageing) and the dermatologist Professor Sabine Eming (University of Cologne), and included researchers from the University of Cologne’s Cluster of Excellence in Aging Research CECAD, the Max Planck Institute for the Biology of Ageing, Collaborative Research Centre 829 ‘Molecular Mechanisms Regulating Skin Homeostasis’, the Center for Molecular Medicine Cologne (CMMC) (all in Cologne), and the University of Helsinki. The paper ‘Glutamine Metabolism Controls Stem Cell Fate Reversibility and Long-Term Maintenance in the Hair Follicle’ has been published in Cell Metabolism.

Placenta is Initiated First, as Cells of a Fertilised Egg Divide and Specialise

Stembook:Placenta is Initiated First, as Cells of a Fertilised Egg Divide and Specialise

London, UK – The first stages of placental development take place days before the embryo starts to form in human pregnancies. The finding highlights the importance of healthy placental development in pregnancy, and could lead to future improvements in fertility treatments such as IVF, and a better understanding of placental-related diseases in pregnancy.

Cincinnati Children's Scientists Identify Hormone that Might Help Treat Malabsorption

Stembook: Cincinnati Children's Scientists Identify Hormone that Might Help Treat Malabsorption
Human intestinal organoids grown from stem cells used to model congenital disorder in babies

Cincinnati, OH, USA – Scientists at Cincinnati Children's used human intestinal organoids grown from stem cells to discover how our bodies control the absorption of nutrients from the food we eat. They further found that one hormone might be able to reverse a congenital disorder in babies who cannot adequately absorb nutrients and need intravenous feeding to survive.

Uncovering the Clock that Sets the Speed of Embryo Development

Uncovering the Clock that Sets the Speed of Embryo Development

London, UK – Why do pregnancies last longer in some species than others? Researchers at the Francis Crick Institute have found the clock that sets the speed of embryonic development and discovered the mechanism is based on how proteins are made and dismantled. The study, published in Science, could also help us understand how different mammals evolved from one another and help refine methods for regenerative medicine.

Pages