News & Commentaries

Forsyth Researchers Demonstrate How Changing the Stem Cell Response to Inflammation May Reverse Periodontal Disease

Stembook: Forsyth Researchers Demonstrate How Changing the Stem Cell Response to Inflammation May Reverse Periodontal Disease

Cambridge, MA, USA – Periodontal disease, also known as gum disease, is a serious infection that affects nearly 50 percent of Americans aged 30 years and older. If left unchecked, periodontal disease can destroy the jawbone and lead to tooth loss. The disease is also associated with higher risk of diabetes and cardiovascular disease.

Exosome Treatment Improves Recovery from Heart Attacks in a Preclinical Study

Stembook: Exosome Treatment Improves Recovery from Heart Attacks in a Preclinical Study

Birmingham, AL, USA – Science has long known that recovery from experimental heart attacks is improved by injection of a mixture of heart muscle cells, endothelial cells and smooth muscle cells, yet results have been limited by poor engraftment and retention, and researchers worry about potential tumorigenesis and heart arrhythmia.

Fine-tuning Stem Cell Metabolism Prevents Hair Loss

Stembook: Fine-tuning Stem Cell Metabolism Prevents Hair Loss
An international research team has shown in mice that Rictor, a protein that helps to regulate the growth, energy, and oxygen consumption of cells, plays a key role in the cellular metabolism and longevity of hair follicle stem cells.

Cologne, Germany – A team of researchers from Cologne and Helsinki has discovered a mechanism that prevents hair loss: hair follicle stem cells, essential for hair to regrow, can prolong their life by switching their metabolic state in response to low oxygen concentration in the tissue. The team was led by Associate Professor Sara Wickström (University of Helsinki and Max Planck Institute for the Biology of Ageing) and the dermatologist Professor Sabine Eming (University of Cologne), and included researchers from the University of Cologne’s Cluster of Excellence in Aging Research CECAD, the Max Planck Institute for the Biology of Ageing, Collaborative Research Centre 829 ‘Molecular Mechanisms Regulating Skin Homeostasis’, the Center for Molecular Medicine Cologne (CMMC) (all in Cologne), and the University of Helsinki. The paper ‘Glutamine Metabolism Controls Stem Cell Fate Reversibility and Long-Term Maintenance in the Hair Follicle’ has been published in Cell Metabolism.

Placenta is Initiated First, as Cells of a Fertilised Egg Divide and Specialise

Stembook:Placenta is Initiated First, as Cells of a Fertilised Egg Divide and Specialise

London, UK – The first stages of placental development take place days before the embryo starts to form in human pregnancies. The finding highlights the importance of healthy placental development in pregnancy, and could lead to future improvements in fertility treatments such as IVF, and a better understanding of placental-related diseases in pregnancy.

Stem Cells Can Repair Parkinson’s-damaged Circuits in Mouse Brains

Stembook: Stem Cells Can Repair Parkinson’s-damaged Circuits in Mouse Brains

Madison, WI, USA – The mature brain is infamously bad at repairing itself following damage like that caused by trauma or strokes, or from degenerative diseases like Parkinson’s. Stem cells, which are endlessly adaptable, have offered the promise of better neural repair. But the brain’s precisely tuned complexity has stymied the development of clinical treatments.

Becoming A Nerve Cell: Timing Is Of The Essence

Stembook: Becoming A Nerve Cell: Timing Is Of The Essence

Gent, Belgium – Mitochondria are small organelles that provide the energy critical for each cell in our body, in particular in the high fuel-consuming brain. In this week’s edition of Science, a Belgian team of researchers led by Pierre Vanderhaeghen (VIB-KU Leuven, ULB) finds that mitochondria also regulate a key event during brain development: how neural stem cells become nerve cells. Mitochondria influence this cell fate switch during a precise period that is twice as long in humans compared to mice. The seminal findings highlight an unexpected function for mitochondria that may help explain how humans developed a bigger brain during evolution, and how mitochondrial defects lead to neurodevelopmental diseases. the study was published in Science.

Implanted Neural Stem Cell Grafts Show Functionality in Spinal Cord Injuries

Stembook: Implanted Neural Stem Cell Grafts Show Functionality in Spinal Cord Injuries

San Diego, CA,USA – Using stem cells to restore lost functions due to spinal cord injury (SCI) has long been an ambition of scientists and doctors. Nearly 18,000 people in the United States suffer SCIs each year, with another 294,000 persons living with an SCI, usually involving some degree of permanent paralysis or diminished physical function, such as bladder control or difficulty breathing.

UMSOM Researchers Discover Stem Cells in the Optic Nerve that Enable Preservation of Vision

Stembook: UMSOM Researchers Discover Stem Cells in the Optic Nerve that Enable Preservation of Vision
Finding May Lead to New Therapeutic Strategy for Disorders Causing Blindness

Baltimore, MD, USA – Researchers at the University of Maryland School of Medicine (UMSOM) have for the first time identified stem cells in the region of the optic nerve, which transmits signals from the eye to the brain. The finding, published this week in the journal Proceedings of the National Academy of Sciences (PNAS), presents a new theory on why the most common form of glaucoma may develop and provides potential new ways to treat a leading cause of blindness in American adults.

How Airway Cells Work Together in Regeneration and Aging

Stembook: How Airway Cells Work Together in Regeneration and Aging

Los Angeles, CA, USA – Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have identified the process by which stem cells in the airways of the lungs switch between two distinct phases – creating more of themselves and producing mature airway cells – to regenerate lung tissue after an injury.

Pages