Stembook Sections:
Cellular and nuclear reprogramming »
  • Inducing pluripotency
  • Stem cells in animal models of regeneration
  • Small RNAs – their biogenesis, regulation and function in embryonic stem cells
Ectoderm specification and differentiation »
  • The cranial sensory nervous system: specification of sensory progenitors and placodes
  • Tooth organogenesis and regeneration
  • Melanocyte stem cells
Endoderm specification and differentiation »
  • Pancreatic stem cells
  • Specification and patterning of the respiratory system
  • Liver development
Epigenetics »
  • Epigenetic mechanisms controlling mesodermal specification
  • Imaging chromatin in embryonic stem cells
  • Epigenetic silencing during early lineage commitment
Genomics and proteomics »
  • Proteomic studies of stem cells
  • Genome-wide transcription factor localization and function in stem cells
  • The pluripotent transcriptome
Germ cell and somatic stem cell biology in reproduction »
  • Regulation of spermatogonia
  • piRNA function in germline development
  • The role of microRNAs in germline differentiation
Manufacturing »
  • Regulatory challenges for the manufacture and scale-out of autologous cell therapies
  • From production to patient: challenges and approaches for delivering cell therapies
Mesoderm specification and differentiation »
  • Epigenetic mechanisms controlling mesodermal specification
  • Mouse kidney development
  • Adult mesenchymal stem cells
Niche biology, homing, and migration »
  • Hematopoietic stem cell trafficking
  • The neural stem cell microenvironment
Renewal »
  • Aging and stem cell renewal
  • Quiescent stem cells in the niche
  • Mechanisms regulating stem cell polarity and the specification of asymmetric divisions
Stem cell immunology »
  • Immunologic targeting of the cancer stem cell
  • Immunological considerations for cell therapy using human embryonic stem cell derivatives
  • Mouse models of graft-versus-host disease
Therapeutic prospects »
  • The hematopoietic stem cell niche
  • Medical applications of epidermal stem cells
  • Mesenchymal stromal cells as a drug delivery system
Tissue engineering »
  • Molecular Imaging of Stem Cells **NEW**
  • Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery **NEW**
  • Autologous approaches to tissue engineering

News & Commentaries

Aided by Stem Cells, a Lizard Regenerates a Perfect Tail for the First Time in 250 Million Years

Stembook: Aided by Stem Cells, a Lizard Regenerates a Perfect Tail for the First Time in 250 Million Years

Los Angeles, CA, USA – Lizards can regrow severed tails, making them the closest relative to humans that can regenerate a lost appendage. But in lieu of the original tail that includes a spinal column and nerves, the replacement structure is an imperfect cartilage tube. Now, for the first time, a USC-led study in Nature Communications describes how stem cells can help lizards regenerate better tails.

Study: Gene Therapy Can Restore Vision After Stroke

Stembook: Study: Gene therapy can restore vision after stroke

West Lafayette, IN, USA – Most strokes happen when an artery in the brain becomes blocked. Blood flow to the neural tissue stops, and those tissues typically die. Because of the locations of the major arteries in the brain, many strokes affect motor function. Some affect vision, however, causing patients to lose their vision or find it compromised or diminished. A research team led by Purdue University’s Alexander Chubykin, an associate professor of biological sciences in the College of Science, in collaboration with the team led by Gong Chen at Jinan University, China, has discovered a way to use gene therapy to turn glial brain cells into neurons, restoring visual function and offering hope for a way to restore motor function.