Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Durruthy-Durruthy, R., Gottlieb, A., and Heller, S. (2015). 3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data.Nat Protoc10, 459-474.
Shahini, A., Yazdimamaghani, M., Walker, K.J., Eastman, M.A., Hatami-Marbini, H., Smith, B.J., Ricci, J.L., Madihally, S.V., Vashaee, D., and Tayebi, L. (2014). 3D conductive nanocomposite scaffold for bone tissue engineering.Int J Nanomedicine9, 167-81.
Papadimitriou, C., Celikkaya, H., Cosacak, M.I., Mashkaryan, V., Bray, L., Bhattarai, P., Brandt, K., Hollak, H., Chen, X., He, S., et al. (2018). 3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity.Dev Cell46, 85-101.e8.
Bidarra, S.J., and Barrias, C.C. (2018). 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.Methods Mol Biol.
González, S., Mei, H., Nakatsu, M.N., Baclagon, E.R., and Deng, S.X. (2016). A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells.Stem Cell Res16, 358-364.
Chambers, K.F., Mosaad, E.M.O., Russell, P.J., Clements, J.A., and Doran, M.R. (2014). 3D Cultures of Prostate Cancer Cells Cultured in a Novel High-Throughput Culture Platform Are More Resistant to Chemotherapeutics Compared to Cells Cultured in Monolayer.Plos One9, e111029.
Chitrangi, S., Nair, P., and Khanna, A. (2016). 3D engineered In vitrohepatospheroids for studying drug toxicity and metabolism.Toxicol In Vitro.
Inglis, S., Kanczler, J.M., and Oreffo, R.O.C. (2018). 3D human bone marrow stromal and endothelial cell spheres promote bone healing in an osteogenic niche.Faseb Jfj201801114R.
Korhonen, P., Malm, T., and White, A.R. (2018). 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases.Neurochem Int.
Rustgi, A.K. (2018). 3D Human Esophageal Epithelium Steps Out from hPSCs.Cell Stem Cell23, 460-462.
Yin, F., Zhu, Y., Zhang, M., Yu, H., Chen, W., and Qin, J. (2018). A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier.Toxicol In Vitro.
Jung, J.P., Lin, W.-H., Riddle, M.J., Tolar, J., and Ogle, B.M. (2018). A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing.J Biomed Mater Res A.
Jung, Y.Hwan, M Phillips, J., Lee, J., Xie, R., Ludwig, A.L., Chen, G., Zheng, Q., Kim, T.June, Zhang, H., Barney, P., et al. (2018). 3D Microstructured Scaffolds to Support Photoreceptor Polarization and Maturation.Adv Matere1803550.
Taskin, M.Berat, Xu, R., Gregersen, H.Vejersøe, Nygaard, J.Vinge, Besenbacher, F., and Chen, M. (2016). 3D polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation.Acs Appl Mater Interfaces.
Jang, J., Park, H.-J., Kim, S.-W., Kim, H., Park, J.Young, Na, S.Jin, Kim, H.Ji, Park, M.Nyeo, Choi, S.Hyun, Park, S.Hwa, et al. (2016). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.Biomaterials112, 264-274.
Ma, X., Dewan, S., Liu, J., Tang, M., Miller, K.L., Yu, C., Lawrence, N., McCulloch, A.D., and Chen, S. (2018). 3D Printed Micro-Scale Force Gauge Arrays to Improve Human Cardiac Tissue Maturation and Enable High Throughput Drug Testing.Acta Biomater.
Prasopthum, A., Cooper, M., Shakesheff, K.M., and Yang, J. (2019). 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.Acs Appl Mater Interfaces.
Zhou, X., Esworthy, T., Lee, S.-J., Miao, S., Cui, H., Plesiniak, M., Fenniri, H., Webster, T., Rao, R.D., and Zhang, L.Grace (2019). 3D printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.Nanomedicine.
Ma, H., Luo, J., Sun, Z., Xia, L., Shi, M., Liu, M., Chang, J., and Wu, C. (2016). 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.Biomaterials111, 138-148.
Nowicki, M.A., Castro, N.J., Plesniak, M.W., and Zhang, L.Grace (2016). 3D printing of novel osteochondral scaffolds with graded microstructure.Nanotechnology27, 414001.
Komlev, V.S., Popov, V.K., Mironov, A.V., Fedotov, A.Yu, Teterina, A.Yu, Smirnov, I.V., Bozo, I.Y., Rybko, V.A., and Deev, R.V. (2015). 3D Printing of Octacalcium Phosphate Bone Substitutes.Front Bioeng Biotechnol3, 81.
Mironov, A.V., Grigoryev, A.M., Krotova, L.I., Skaletsky, N.N., Popov, V.K., and Sevastianov, V.I. (2016). 3D Printing of PLGA Scaffolds for Tissue Engineering.J Biomed Mater Res A.
Duttenhoefer, F., R de Freitas, L., Meury, T., Loibl, M., Benneker, L.M., Richards, R.G., Alini, M., and Verrier, S. (2013). 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: Evidence of prevascularisation within 7 days.Eur Cell Mater26, 49-65.
Chen, G., Dong, C., Yang, L., and Lv, Y. (2015). 3D Scaffolds with Different Stiffness but Same Microstructure for Bone Tissue Engineering.Acs Appl Mater Interfaces.
Campisi, M., Shin, Y., Osaki, T., Hajal, C., Chiono, V., and Kamm, R.D. (2018). 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes.Biomaterials180, 117-129.