Biblio

Journal Article
Mi X, Su Z, Fu Y, Li S, Mo A. 3D printing of TiC-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed Mater. 2022.
Su C, Argenziano M, Sumei L, Pippin JA, Pahl MC, Leonard ME, Cousminer DL, Johnson ME, Lasconi C, Wells AD, et al. 3D promoter architecture re-organization during iPSC-derived neuronal cell differentiation implicates target genes for neurodevelopmental disorders. Prog Neurobiol. 2021:102000.
Xu J, Zhang L, Ye Z, Chang B, Tu Z, Du X, Wen X, Teng Y. A 3D "sandwich" co-culture system with vascular niche supports mouse embryo development from E3.5 to E7.5 in vitro. Stem Cell Res Ther. 2023;14(1):349.
Duttenhoefer F, R de Freitas L, Meury T, Loibl M, Benneker LM, Richards RG, Alini M, Verrier S. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: Evidence of prevascularisation within 7 days. Eur Cell Mater. 2013;26:49-65.
Chen G, Dong C, Yang L, Lv Y. 3D Scaffolds with Different Stiffness but Same Microstructure for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2015.
Campisi M, Lim SHien, Chiono V, Kamm RDale. 3D Self-Organized Human Blood-Brain Barrier in a Microfluidic Chip. Methods Mol Biol. 2021;2258:205-219.
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117-129.
Bräunig S, Karmhag I, Li H, Enoksson J, Hultquist A, Scheding S. 3D Spatial Mapping of the Human Hematopoietic Microenvironment in Healthy and Diseased Bone Marrow. Cytometry A. 2023.
Ma Y, Lin M, Huang G, Li Y, Wang S, Bai G, Lu TJian, Xu F. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate. Adv Mater. 2018:e1705911.
Xu Y, Shi T, Xu A, Zhang L. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. J Cell Mol Med. 2016.
Giles RH, Ajzenberg H, Jackson PK. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat Protoc. 2014;9(12):2725-2731.
Liu X, Potes MDAstudill, Dashtdar B, Schreiber AC, Tilton M, Li L, Elder BD, Lu L. 3D Stem Cell Spheroids with 2D Hetero-Nanostructures for In Vivo Osteogenic and Immunologic Modulated Bone Repair. Adv Healthc Mater. 2024:e2303772.
Liu H, Ye J, Hu H, Song Y, Qiang H, Wang J, Zhou L, Wang X, Fei X, Zhu M. 3D stem cell spheroids with urchin-like hydroxyapatite microparticles enhance osteogenesis of stem cells. J Mater Chem B. 2024.
Park S-R, Kim S-R, Im JBeen, Park CHum, Lee H-Y, Hong I-S. 3D stem cell-laden artificial endometrium: successful endometrial regeneration and pregnancy. Biofabrication. 2021.
de la Puente P, Muz B, Gilson RC, Azab F, Luderer M, King J, Achilefu S, Vij R, Azab AKareem. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials. 2015;73:70-84.
Kunz L, Schroeder T. A 3D Tissue-wide Digital Imaging Pipeline for Quantitation of Secreted Molecules Shows Absence of CXCL12 Gradients in Bone Marrow. Cell Stem Cell. 2019;25(6):846-854.e4.
Beigi M-H, Safaie N, Nasr-Esfahani M-H, Kiani A. 3D Titania Nanofiber-Like Webs Induced by Plasma Ionization: A New Direction for Bioreactivity and Osteoinductivity Enhancement of Biomaterials. Sci Rep. 2019;9(1):17999.
Segura MLRuiz Tej, Moussa EAbou, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, S Y Huang S, Mainland JD, et al. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep. 2022;38(12):110547.
Bongio M, Lopa S, Gilardi M, Bersini S, Moretti M. A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine (Lond). 2016.
Ding Z, Li R, Duan Y, Li Z, Fang B, Jing D. A 3-D Visualization Technique for Bone Remodeling in a Suture Expansion Mouse Model. J Vis Exp. 2023;(198).
Zhang Y, Li D, Liu Y, Peng L, Lu D, Wang P, Ke D, Yang H, Zhu X, Ruan C. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation (Camb). 2024;5(1):100542.
Liu Y, Peng L, Li L, Huang C, Shi K, Meng X, Wang P, Wu M, Li L, Cao H, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279:121216.
Perez MRestan, da Silva VAlisson, Cortez PEsmeralda, Joddar B, Willerth SMichelle. 3D-bioprinted cardiac tissues and their potential for disease modeling. J 3D Print Med. 2023;7(2).
Wolfe JT, He W, Kim M-S, Liang H-L, Shradhanjali A, Jurkiewicz H, Freudinger BP, Greene AS, LaDisa JF, Tayebi L, et al. 3D-bioprinting of patient-derived cardiac tissue models for studying congenital heart disease. Front Cardiovasc Med. 2023;10:1162731.
Mohenska M, Tan NM, Tokolyi A, Furtado MB, Costa MW, Perry AJ, Hatwell-Humble J, van Duijvenboden K, Nim HT, Ji YMM, et al. 3D-cardiomics: A spatial transcriptional atlas of the mammalian heart. J Mol Cell Cardiol. 2021.

Pages