Introduced a New Paradigm of Cell Transplantation with Scaffold Microrobots

Introduced a New Paradigm of Cell Transplantation with Scaffold Microrobots

StemBook: Introduced a New Paradigm of Cell Transplantation with Scaffold Microrobots (stem cells)

Daegu, Korea – A research team from Daegu Gyeongbuk Institute of Science and Technology (DGIST) succeeded in developing stem cell delivery of scaffold microrobot that can precisely deliver cells to a target body tissue. This research achievement is expected to enhance the treatment safety and efficiency of degenerative neural disorders as it can precisely transplant the exact amount of stem cell-based treatment cells to human body tissues and organs.

DGIST recently announced that Professor Hongsoo Choi's team in the Department of Robotics Engineering developed a "scaffold microrobot for stem cell delivery and transplantation," which can further enhance the existing treatment efficiency of stem cell. A joint international research was conducted with Senior Researcher Jin-young Kim at DGIST-ETH Microrobot Research Center, Professor Seong-Woon Yu and Professor Cheil Moon's team in the Department of Brain and Cognitive Sciences, Professor Sung Won Kim's team in Seoul St. Mary's Hospital, and Professor Bradley J. Nelson's team in the Institute of Robotic and Intelligent Systems at ETH, Zurich, Switzerland.

Stem cell treatment has been taking limelight as a regenerative medical technique for intractable disorder treatment, but it cannot transplant the exact amount of stem cells to the target areas in need of treatment deeply inside body or may carry injection risk. It has especially been pointed out that treatment efficiency and safety are low due to huge loss during the in vivo delivery of stem cells and a high cost of treatment.

To overcome such limitation, the DGIST research team devised scaffold microrobot in a spherical and helical type through the 3D laser lithography. The biggest achievement of this study is that it minimized cell loss in the body through a wireless control method using an external magnetic field while transplanting stem cells quickly and precisely at the same time.

What is noteworthy is that while the existing researches tested microrobots in a static external environment and not physiological environment, this research cultured a hippocampal neural stem cell on a microrobot for the first time in the world. They divided the cell into specific cells such as astrocyte, Oligodendrocyte, and neuron and succeeded in precisely delivering and transplanting them in the target.

To gain this achievement, the research team showed the cell transfer and transplantation process using the microrobot inside body-on-a-chip (BOC), a microfluidic cell culture system that replicated a physiological in vivo environment. They also extracted a rat's brain and injected the microrobot into the internal carotid artery, and transferred it to the anterior cerebral artery and middle cerebral artery using outer magnetic field. A highlight of this joint research is that they cultured the ‘hNTSCs10’ provided by Professor Sung Won Kim's team at the Catholic University St. Mary's Hospital on the microrobot in 3D for successful experiment.

Professor Hongsoo Choi at the Department of Robotics Engineering said: "Through this research we hope to increase the treatment efficiency and success rate for Alzheimer and central neural diseases, which couldn't be approached through the existing method of stem cell treatment. Through continuous follow-up research with hospitals and related companies, we will do our best to develop a microrobot-based precise treatment system that can be used in actual hospital and clinical sites."

This experiment result was published issue of Science Robotics, a top international journal in robot research field and the sister magazine of Science, a world-renowned scientific journal.

NOTES TO EDITORS
Full Study: Sungwoong Jeon, Sangwon Kim, Shinwon Ha, Seungmin Lee, Eunhee Kim, So Yeun Kim, Sun Hwa Park, Jung Ho Jeon, Sung Won Kim, Cheil Moon, Bradley J. Nelson, Jin‐young Kim, Seong-Woon Yu, Hongsoo Choi (2019) "Magnetically actuated microrobots as a platform for stem cell transplantatio", Science Robotics, published online 29 May 2019 (DOI: 10.1126/scirobotics.aav4317).

This research was also supported by the Ministry of Science and ICT and the Ministry of Trade, Industry, and Energy.

Contact
Author contact: Professor Hongsoo Choi, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) (mems@dgist.ac.kr).