News & Commentaries

Curing Genetic Disease in Human Stem Cells

Stembook: Curing Genetic Disease in Human Stem Cells

Utrecht, The Netherlands – Whereas the CRISPR-Cas technology developed in 2012 cuts out a defect in a gene and replaces it with a new piece, the latest CRISPR technology works differently. The aim is to repair the error in the DNA without cutting it. This theoretically makes it a safer form of genetic editing. Scientists from Utrecht have shown for the first time that this technique can effectively and safely repair the DNA of stem cells derived from cystic fibrosis patients in the lab. The results of this study were published in the scientific journal Cell Stem Cell on the 20th of February.

A Case Of Reverse Development: Dana-Farber Scientists Solve Long-Debated Puzzle Of How The Intestine Heals Itself

Stembook: A Case Of Reverse Development: Dana-Farber Scientists Solve Long-Debated Puzzle Of How The Intestine Heals Itself

Boston, MA, USA – Deep within the lining of the human intestine lies the source of the organ’s ability to renew itself and recover from damage: intestinal stem cells (ISCs), lodged in pockets of tissue called crypts, generate the cells that continuously repopulate the intestinal lining. Even the stem cells themselves have a safety net: when they’re damaged, healthy replacements appear in less than a week.

Computer Simulations Visualize How DNA Is Recognized To Convert Cells Into Stem Cells

Stembook: Computer Simulations Visualize How DNA Is Recognized To Convert Cells Into Stem Cells

Utrecht, The Netherlands – Researchers from the group of Vlad Cojocaru together with colleagues the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells. Their findings are published in the Biophysical Journal.

Scientists Discover How Rogue Communications Between Cells Lead to Leukaemia

STEMBOOK: Scientists discover how rogue communications between cells lead to Leukaemia

Helsinki, Finland – New research has deciphered how rogue communications in blood stem cells can cause Leukaemia. The discovery could pave the way for new, targeted medical treatments that block this process. Blood cancers like leukaemia occur when mutations in stem cells cause them to produce too many blood cells. The study is published in the journal Science

Abnormal Bone Formation After Trauma Explained and Reversed in Mice

STEMBOOK: Abnormal Bone Formation After Trauma Explained and Reversed in Mice
Findings implicate a specific type of immune cell behind heterotopic ossification--and present a potential target for treatment.

Ann Arbor, MI, USA – Hip replacements, severe burns, spinal cord injuries, blast injuries, traumatic brain injuries—these seemingly disparate traumas can each lead to a painful complication during the healing process called heterotopic ossification. Heterotopic ossification is abnormal bone formation within muscle and soft tissues, an unfortunately common phenomenon that typically occurs weeks after an injury or surgery. Patients with heterotopic ossification experience decreased range of motion, swelling and pain.

New Hydrogels Wither While Stem Cells Flourish for Tissue Repair

STEMBOOK: New hydrogels wither while stem cells flourish for tissue repair

College Station, TX, USA – Baby diapers, contact lenses and gelatin dessert. While seemingly unrelated, these items have one thing in common — they’re made of highly absorbent substances called hydrogels that have versatile applications. Recently, a type of biodegradable hydrogel, dubbed microporous annealed particle (MAP) hydrogel, has gained much attention for its potential to deliver stem cells for body tissue repair. But it is currently unclear how these jelly-like materials affect the growth of their precious cellular cargo, thereby limiting its use in regenerative medicine.

ASU Scientists Boost Gene-editing Tools to New Heights in Human Stem Cells

STEMBOOK: ASU scientists boost gene-editing tools to new heights in human stem cells
Proof-of-concept shows genes implicated in Alzheimer's disease can be accurately edited with 90% efficiency in human stem cells

College Station, TX, USA – During the past decade, the gene editing tool CRISPR has transformed biology and opened up hopeful avenues to correct deadly inherited diseases. Now, the first human clinical trials using CRISPR have begun in the hopes of curing diseases by taking damaged cells out of patient and repairing and replacing them.

Molecular Motors Direct the Fate of Stem Cells

STEMBOOK: Molecular motors direct the fate of stem cells
Proof-of-concept shows genes implicated in Alzheimer's disease can be accurately edited with 90% efficiency in human stem cells

Groningen, The Netherlands – The surface on which cells are grown can affect their properties. Scientists have used molecular motors, which rotate when irradiated with light, to change the structure of a protein layer on which stem cells were seeded. These stem cells, derived from bone marrow, can form different cell types or they can remain stem cells. The movement of the motors primed the stem cells to transform more efficiently into bone cells. This technique could be used to dynamically control cellular behaviour on surfaces and create complex cell layers and tissues with different cell types by changing the properties of the protein layer at specific places.

After a Bone Injury, Shape-shifting Cells Rush to the Rescue

STEMBOOK: After a bone injury, shape-shifting cells rush to the rescue

Ann Arbor, MI, USA – Scientists at the University of Groningen and the University Medical Center Groningen used molecular motors to manipulate the protein matrix on which bone marrow-derived mesenchymal stem cells are grown. Rotating motors altered the protein structure, which resulted in a bias of the stem cells to differentiate into bone cells (osteoblasts). Without rotation, the stem cells tended to remain multipotent. These results, which could be used in tissue engineering, were published in Science Advances on 29 January.

Pages