Biblio

Journal Article
Idaszek J, Costantini M, Karlsen TA, Jaroszewicz J, Colosi C, Testa S, Fornetti E, Bernardini S, Podobinska M, Kasarełło K, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication. 2019.
Liang S, Su Y, Yao R. 3D Bioprinting of Induced Pluripotent Stem Cells and Disease Modeling. Handb Exp Pharmacol. 2023.
Goulart E, de Caires-Junior LCarlos, Telles-Silva KAlves, Araujo BHenrique S, Rocco SAparecida, Sforca M, de Sousa ILayane, Kobayashi GShigeru, Musso CManso, Assoni AFaria, et al. 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro. Biofabrication. 2019.
Sun X, Jiao X, Yang X, Ma J, Wang T, Jin W, Li W, Yang H, Mao Y, Gan Y, et al. 3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration. Biofabrication. 2022.
Nulty J, Freeman FE, Browe DC, Burdis R, Ahern DP, Pitacco P, Bin Lee Y, Alsberg E, Kelly DJ. 3D Bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021.
Neufurth M, Wang S, Schröder HC, Al-Nawas B, Wang X, Müller WEg. 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink. Biofabrication. 2021.
Senturk E, Bilici C, Afghah F, Khan Z, Çelik S, Wu C, Koc B. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface. Biofabrication. 2023.
Benwood C, Walters-Shumka J, Scheck K, Willerth SM. 3D bioprinting patient-derived induced pluripotent stem cell models of Alzheimer's disease using a smart bioink. Bioelectron Med. 2023;9(1):10.
Lee JY, Lee H, Jin E-J, Ryu D, Kim GHyung. 3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. NPJ Regen Med. 2023;8(1):18.
Haring AP, Jiang S, Barron C, Thompson EG, Sontheimer H, He J-Q, Jia X, Johnson BN. 3D bioprinting using hollow multifunctional fiber impedimetric sensors. Biofabrication. 2020.
Sang S, Mao X, Cao Y, Liu Z, Shen Z, Li M, Jia W, Guo Z, Wang Z, Xiang C, et al. 3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration. ACS Appl Mater Interfaces. 2023.
Carroll JA, Foliaki ST, Haigh CL. A 3D cell culture approach for studying neuroinflammation. J Neurosci Methods. 2021:109201.
Orive G, Santos-Vizcaino E, Pedraz JLuis, Hernandez RMaria, Ramirez JEVela, Dolatshahi-Pirouz A, Khademhosseini A, Peppas NA, Emerich DF. 3D cell-laden polymers to release bioactive products in the eye. Prog Retin Eye Res. 2018.
Chae S, Sun Y, Choi Y-J, Ha D-H, Jeon I-H, Cho D-W. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication. 2020.
Ergene E, Bilecen DSezlev, Kaya B, Huri PYilgor, Hasirci V. 3D cellular alignment and biomimetic mechanical stimulation enhance human adipose-derived stem cell myogenesis. Biomed Mater. 2020.
Zhang Z, Du J, Wei Z, Wang Z, Li M, Ni J. A 3D computational model of perfusion seeding for investigating cell transport and adhesion within a porous scaffold. Biomech Model Mechanobiol. 2020.
Durruthy-Durruthy R, Gottlieb A, Heller S. 3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data. Nat Protoc. 2015;10(3):459-474.
Shahini A, Yazdimamaghani M, Walker KJ, Eastman MA, Hatami-Marbini H, Smith BJ, Ricci JL, Madihally SV, Vashaee D, Tayebi L. 3D conductive nanocomposite scaffold for bone tissue engineering. Int J Nanomedicine. 2014;9:167-81.
Ardalani H, Sengupta S, Harms V, Vickerman V, Thomson JA, Murphy WL. 3-D Culture and Endothelial Cells Improve Maturity of Human Pluripotent Stem Cell-Derived Hepatocytes. Acta Biomater. 2019.
Papadimitriou C, Celikkaya H, Cosacak MI, Mashkaryan V, Bray L, Bhattarai P, Brandt K, Hollak H, Chen X, He S, et al. 3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity. Dev Cell. 2018;46(1):85-101.e8.
Kumar P, Franco AJimenez, Zhao X. 3D culture of fibroblasts and neuronal cells on microfabricated free-floating carriers. Colloids Surf B Biointerfaces. 2023;227:113350.
Bidarra SJ, Barrias CC. 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels. Methods Mol Biol. 2018.
Malheiro A, Harichandan A, Bernardi J, Seijas-Gamardo A, Konings GF, Volders PGA, Romano A, Mota C, Wieringa P, Moroni L. 3D culture platform of human iPSCs-derived nociceptors for peripheral nerve modelling and tissue innervation. Biofabrication. 2021.
González S, Mei H, Nakatsu MN, Baclagon ER, Deng SX. A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells. Stem Cell Res. 2016;16(2):358-364.
Sun L, Ji Y, Chi B, Xiao T, Li C, Yan X, Xiong X, Mao L, Cai D, Zou A, et al. A 3D culture system improves the yield of MSCs-derived extracellular vesicles and enhances their therapeutic efficacy for heart repair. Biomed Pharmacother. 2023;161:114557.

Pages