Journal Article
Ma, X., Dewan, S., Liu, J., Tang, M., Miller, K.L., Yu, C., Lawrence, N., McCulloch, A.D., and Chen, S. (2018). 3D Printed Micro-Scale Force Gauge Arrays to Improve Human Cardiac Tissue Maturation and Enable High Throughput Drug Testing.Acta Biomater.
Prasopthum, A., Cooper, M., Shakesheff, K.M., and Yang, J. (2019). 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.Acs Appl Mater Interfaces.
Zhou, X., Esworthy, T., Lee, S.-J., Miao, S., Cui, H., Plesiniak, M., Fenniri, H., Webster, T., Rao, R.D., and Zhang, L.Grace (2019). 3D printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.Nanomedicine.
Ma, H., Luo, J., Sun, Z., Xia, L., Shi, M., Liu, M., Chang, J., and Wu, C. (2016). 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.Biomaterials111, 138-148.
Nowicki, M.A., Castro, N.J., Plesniak, M.W., and Zhang, L.Grace (2016). 3D printing of novel osteochondral scaffolds with graded microstructure.Nanotechnology27, 414001.
Komlev, V.S., Popov, V.K., Mironov, A.V., Fedotov, A.Yu, Teterina, A.Yu, Smirnov, I.V., Bozo, I.Y., Rybko, V.A., and Deev, R.V. (2015). 3D Printing of Octacalcium Phosphate Bone Substitutes.Front Bioeng Biotechnol3, 81.
Mironov, A.V., Grigoryev, A.M., Krotova, L.I., Skaletsky, N.N., Popov, V.K., and Sevastianov, V.I. (2016). 3D Printing of PLGA Scaffolds for Tissue Engineering.J Biomed Mater Res A.
Motealleh, A., Celebi-Saltik, B., Ermis, N., Nowak, S., Khademhosseini, A., and Kehr, N.Seda (2019). 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.Biofabrication.
Duttenhoefer, F., R de Freitas, L., Meury, T., Loibl, M., Benneker, L.M., Richards, R.G., Alini, M., and Verrier, S. (2013). 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: Evidence of prevascularisation within 7 days.Eur Cell Mater26, 49-65.
Chen, G., Dong, C., Yang, L., and Lv, Y. (2015). 3D Scaffolds with Different Stiffness but Same Microstructure for Bone Tissue Engineering.Acs Appl Mater Interfaces.
Campisi, M., Shin, Y., Osaki, T., Hajal, C., Chiono, V., and Kamm, R.D. (2018). 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes.Biomaterials180, 117-129.
Ma, Y., Lin, M., Huang, G., Li, Y., Wang, S., Bai, G., Lu, T.Jian, and Xu, F. (2018). 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate.Adv Matere1705911.
Xu, Y., Shi, T., Xu, A., and Zhang, L. (2016). 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney.J Cell Mol Med.
Giles, R.H., Ajzenberg, H., and Jackson, P.K. (2014). 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders.Nat Protoc9, 2725-2731.
de la Puente, P., Muz, B., Gilson, R.C., Azab, F., Luderer, M., King, J., Achilefu, S., Vij, R., and Azab, A.Kareem (2015). 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma.Biomaterials73, 70-84.
Bongio, M., Lopa, S., Gilardi, M., Bersini, S., and Moretti, M. (2016). A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix.Nanomedicine (Lond).
Kawaguchi, N., Hatta, K., and Nakanishi, T. (2013). 3D-Culture System for Heart Regeneration and Cardiac Medicine.Biomed Res Int2013, 895967.
Joshi, P., Yu, K.-N., Kang, S.-Y., Kwon, S.Joon, Kwon, P.S., Dordick, J.S., Kothapalli, C.R., and Lee, M.-Y. (2018). 3D-cultured neural stem cell microarrays on a micropillar chip for high-throughput developmental neurotoxicology.Exp Cell Res.
Mayr, C., Wagner, A., Stoecklinger, A., Jakab, M., Illig, R., Berr, F., Pichler, M., DI Fazio, P., Ocker, M., Neureiter, D., et al. (2015). 3-Deazaneplanocin A May Directly Target Putative Cancer Stem Cells in Biliary Tract Cancer.Anticancer Res35, 4697-705.
Park, J.Hong, Jung, S.Yeon, Lee, C.-K., Ban, M.Jin, Lee, S.Jin, Kim, H.Yeong, Oh, H.Ju, Kim, B.Kook, Park, H.Sang, Jang, S.-H., et al. (2019). A 3D-printed polycaprolactone/β-tricalcium phosphate mandibular prosthesis: A pilot animal study.Laryngoscope.
Fairag, R., Rosenzweig, D., Garcialuna, J.Luis Ramir, Weber, M.H., and Haglund, L. (2019). 3D-Printed Polylactic Acid (PLA) Scaffolds Promote Bone-like Matrix Deposition In-vitro.Acs Appl Mater Interfaces.
Bae, I.Hwa, Lee, W.Sang, Yun, D.Ho, Han, Y.-H., and Lee, J.-S. (2014). 3-Hydroxy-3', 4'-dimethoxyflavone suppresses Bcl-w-induced invasive potentials and stemness in glioblastoma multiforme.Biochem Biophys Res Commun.
Wang, Y., Zhao, Z., Rege, S.V., Wang, M., Si, G., Zhou, Y., Wang, S., Griffin, J.H., Goldman, S.A., and Zlokovic, B.V. (2016). 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice.Nat Med.
Quaade, M.Louise, Jensen, C.Harken, Andersen, D.Caroline, and Sheikh, S.Paludan (2016). A 3-month age difference profoundly alters the primary rat stromal vascular fraction phenotype.Acta Histochem.
De Braekeleer, M., Le Bris, M.-J., De Braekeleer, E., Basinko, A., Morel, F., and Douet-Guilbert, N. (2015). 3q26/EVI1 rearrangements in myeloid hemopathies: a cytogenetic review.Future Oncol11, 1675-1686.