Journal Article
Yin, F., Zhu, Y., Zhang, M., Yu, H., Chen, W., and Qin, J. (2018). A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier.Toxicol In Vitro.
Hong, K.Hyun, and Song, S.-C. (2019). 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate.Biomaterials218, 119338.
Jung, J.P., Lin, W.-H., Riddle, M.J., Tolar, J., and Ogle, B.M. (2018). A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing.J Biomed Mater Res A.
Jung, Y.Hwan, M Phillips, J., Lee, J., Xie, R., Ludwig, A.L., Chen, G., Zheng, Q., Kim, T.June, Zhang, H., Barney, P., et al. (2018). 3D Microstructured Scaffolds to Support Photoreceptor Polarization and Maturation.Adv Matere1803550.
Taskin, M.Berat, Xu, R., Gregersen, H.Vejersøe, Nygaard, J.Vinge, Besenbacher, F., and Chen, M. (2016). 3D polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation.Acs Appl Mater Interfaces.
Xu, K., Ganapathy, K., Andl, T., Wang, Z., Copland, J.A., Chakrabarti, R., and Florczyk, S.J. (2019). 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines.Biomaterials217, 119311.
Jang, J., Park, H.-J., Kim, S.-W., Kim, H., Park, J.Young, Na, S.Jin, Kim, H.Ji, Park, M.Nyeo, Choi, S.Hyun, Park, S.Hwa, et al. (2016). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.Biomaterials112, 264-274.
Piard, C., Jeyaram, A., Liu, Y., Caccamese, J., Jay, S.M., Chen, Y., and Fisher, J. (2019). 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance.Biomaterials222, 119423.
Ma, X., Dewan, S., Liu, J., Tang, M., Miller, K.L., Yu, C., Lawrence, N., McCulloch, A.D., and Chen, S. (2018). 3D Printed Micro-Scale Force Gauge Arrays to Improve Human Cardiac Tissue Maturation and Enable High Throughput Drug Testing.Acta Biomater.
Prasopthum, A., Cooper, M., Shakesheff, K.M., and Yang, J. (2019). 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.Acs Appl Mater Interfaces.
Zhou, X., Esworthy, T., Lee, S.-J., Miao, S., Cui, H., Plesiniak, M., Fenniri, H., Webster, T., Rao, R.D., and Zhang, L.Grace (2019). 3D printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.Nanomedicine.
Shai, S.-E., Lai, Y.-L., Li, H.-N., and Hung, S.-C. (2020). 3-D printing model used to streamline surgical procedures for an intricate condition of airway compression caused by devastating mediastinal chondrosarcoma: a case report.J Med Case Rep14, 14.
Ma, H., Luo, J., Sun, Z., Xia, L., Shi, M., Liu, M., Chang, J., and Wu, C. (2016). 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.Biomaterials111, 138-148.
Fu, S., Du, X., Zhu, M., Tian, Z., Wei, D., and Zhu, Y. (2019). 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors.Biomed Mater.
Nowicki, M.A., Castro, N.J., Plesniak, M.W., and Zhang, L.Grace (2016). 3D printing of novel osteochondral scaffolds with graded microstructure.Nanotechnology27, 414001.
Komlev, V.S., Popov, V.K., Mironov, A.V., Fedotov, A.Yu, Teterina, A.Yu, Smirnov, I.V., Bozo, I.Y., Rybko, V.A., and Deev, R.V. (2015). 3D Printing of Octacalcium Phosphate Bone Substitutes.Front Bioeng Biotechnol3, 81.
Mironov, A.V., Grigoryev, A.M., Krotova, L.I., Skaletsky, N.N., Popov, V.K., and Sevastianov, V.I. (2016). 3D Printing of PLGA Scaffolds for Tissue Engineering.J Biomed Mater Res A.
Motealleh, A., Celebi-Saltik, B., Ermis, N., Nowak, S., Khademhosseini, A., and Kehr, N.Seda (2019). 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.Biofabrication.
Duttenhoefer, F., R de Freitas, L., Meury, T., Loibl, M., Benneker, L.M., Richards, R.G., Alini, M., and Verrier, S. (2013). 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: Evidence of prevascularisation within 7 days.Eur Cell Mater26, 49-65.
Chen, G., Dong, C., Yang, L., and Lv, Y. (2015). 3D Scaffolds with Different Stiffness but Same Microstructure for Bone Tissue Engineering.Acs Appl Mater Interfaces.
Campisi, M., Shin, Y., Osaki, T., Hajal, C., Chiono, V., and Kamm, R.D. (2018). 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes.Biomaterials180, 117-129.
Ma, Y., Lin, M., Huang, G., Li, Y., Wang, S., Bai, G., Lu, T.Jian, and Xu, F. (2018). 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate.Adv Matere1705911.
Xu, Y., Shi, T., Xu, A., and Zhang, L. (2016). 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney.J Cell Mol Med.
Giles, R.H., Ajzenberg, H., and Jackson, P.K. (2014). 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders.Nat Protoc9, 2725-2731.
de la Puente, P., Muz, B., Gilson, R.C., Azab, F., Luderer, M., King, J., Achilefu, S., Vij, R., and Azab, A.Kareem (2015). 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma.Biomaterials73, 70-84.