Journal Article
Yassin, M.A., Fuoco, T., Mohamed-Ahmed, S., Mustafa, K., and Finne-Wistrand, A. (2019). 3D and Porous RGDC-Functionalized Polyester-Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells.Macromol Bioscie1900049.
Xu, Y., and Wang, X. (2015). 3D Biomimetic Models for Drug Delivery and Regenerative Medicine.Curr Pharm Des.
Paul, K., Darzi, S., Mcphee, G., Del Borgo, M.P., Werkmeister, J.A., Gargett, C.E., and Mukherjee, S. (2019). 3D Bioprinted Endometrial Stem Cells on Melt Electrospun Poly ε-Caprolactone Mesh for Pelvic Floor Application Promote Anti-inflammatory Responses in Mice.Acta Biomater.
Kosik-Kozioł, A., Costantini, M., Mróz, A., Idaszek, J., Heljak, M., Jaroszewicz, J., Kijeńska, E., Szoke, K., Frerker, N., Barbetta, A., et al. (2019). 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering.Biofabrication.
Moore, C.A., Shah, N.N., Smith, C.P., and Rameshwar, P. (2018). 3D Bioprinting and Stem Cells.Methods Mol Biol1842, 93-103.
Mandrycky, C., Wang, Z., Kim, K., and Kim, D.-H. (2015). 3D Bioprinting for Engineering Complex Tissues.Biotechnol Adv.
de la Vega, L., Lee, C., Sharma, R., Amereh, M., and Willerth, S.M. (2019). 3D bioprinting models of neural tissues: the current state of the field and future directions.Brain Res Bull.
Du, M., Chen, B., Meng, Q., Liu, S., Zheng, X., Zhang, C., Wang, H., Li, H., Wang, N., and Dai, J. (2015). 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.Biofabrication7, 044104.
Alonzo, M., AnilKumar, S., Roman, B., Tasnim, N., and Joddar, B. (2019). 3D Bioprinting of cardiac tissue and cardiac stem cell therapy.Transl Res.
Ji, S., Almeida, E., and Guvendiren, M. (2019). 3D Bioprinting of Complex Channels within Cell-Laden Hydrogels.Acta Biomater.
Daly, A.C., Cunniffe, G.M., Sathy, B.N., Jeon, O., Alsberg, E., and Kelly, D.J. (2016). 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering.Adv Healthc Mater.
Idaszek, J., Costantini, M., Karlsen, T.A., Jaroszewicz, J., Colosi, C., Testa, S., Fornetti, E., Bernardini, S., Podobinska, M., Kasarełło, K., et al. (2019). 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head.Biofabrication.
Goulart, E., de Caires-Junior, L.Carlos, Telles-Silva, K.Alves, Araujo, B.Henrique S., Rocco, S.Aparecida, Sforca, M., de Sousa, I.Layane, Kobayashi, G.Shigeru, Musso, C.Manso, Assoni, A.Faria, et al. (2019). 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro.Biofabrication.
Orive, G., Santos-Vizcaino, E., Pedraz, J.Luis, Hernandez, R.Maria, Ramirez, J.E.Vela, Dolatshahi-Pirouz, A., Khademhosseini, A., Peppas, N.A., and Emerich, D.F. (2018). 3D cell-laden polymers to release bioactive products in the eye.Prog Retin Eye Res.
Zhang, Z., Du, J., Wei, Z., Wang, Z., Li, M., and Ni, J. (2020). A 3D computational model of perfusion seeding for investigating cell transport and adhesion within a porous scaffold.Biomech Model Mechanobiol.
Durruthy-Durruthy, R., Gottlieb, A., and Heller, S. (2015). 3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data.Nat Protoc10, 459-474.
Shahini, A., Yazdimamaghani, M., Walker, K.J., Eastman, M.A., Hatami-Marbini, H., Smith, B.J., Ricci, J.L., Madihally, S.V., Vashaee, D., and Tayebi, L. (2014). 3D conductive nanocomposite scaffold for bone tissue engineering.Int J Nanomedicine9, 167-81.
Ardalani, H., Sengupta, S., Harms, V., Vickerman, V., Thomson, J.A., and Murphy, W.L. (2019). 3-D Culture and Endothelial Cells Improve Maturity of Human Pluripotent Stem Cell-Derived Hepatocytes.Acta Biomater.
Papadimitriou, C., Celikkaya, H., Cosacak, M.I., Mashkaryan, V., Bray, L., Bhattarai, P., Brandt, K., Hollak, H., Chen, X., He, S., et al. (2018). 3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity.Dev Cell46, 85-101.e8.
Bidarra, S.J., and Barrias, C.C. (2018). 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.Methods Mol Biol.
González, S., Mei, H., Nakatsu, M.N., Baclagon, E.R., and Deng, S.X. (2016). A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells.Stem Cell Res16, 358-364.
Chambers, K.F., Mosaad, E.M.O., Russell, P.J., Clements, J.A., and Doran, M.R. (2014). 3D Cultures of Prostate Cancer Cells Cultured in a Novel High-Throughput Culture Platform Are More Resistant to Chemotherapeutics Compared to Cells Cultured in Monolayer.Plos One9, e111029.
Chitrangi, S., Nair, P., and Khanna, A. (2016). 3D engineered In vitrohepatospheroids for studying drug toxicity and metabolism.Toxicol In Vitro.
Inglis, S., Kanczler, J.M., and Oreffo, R.O.C. (2018). 3D human bone marrow stromal and endothelial cell spheres promote bone healing in an osteogenic niche.Faseb Jfj201801114R.
Korhonen, P., Malm, T., and White, A.R. (2018). 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases.Neurochem Int.