Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Daly, A.C., Cunniffe, G.M., Sathy, B.N., Jeon, O., Alsberg, E., and Kelly, D.J. (2016). 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering.Adv Healthc Mater.
Idaszek, J., Costantini, M., Karlsen, T.A., Jaroszewicz, J., Colosi, C., Testa, S., Fornetti, E., Bernardini, S., Podobinska, M., Kasarełło, K., et al. (2019). 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head.Biofabrication.
Orive, G., Santos-Vizcaino, E., Pedraz, J.Luis, Hernandez, R.Maria, Ramirez, J.E.Vela, Dolatshahi-Pirouz, A., Khademhosseini, A., Peppas, N.A., and Emerich, D.F. (2018). 3D cell-laden polymers to release bioactive products in the eye.Prog Retin Eye Res.
Durruthy-Durruthy, R., Gottlieb, A., and Heller, S. (2015). 3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data.Nat Protoc10, 459-474.
Shahini, A., Yazdimamaghani, M., Walker, K.J., Eastman, M.A., Hatami-Marbini, H., Smith, B.J., Ricci, J.L., Madihally, S.V., Vashaee, D., and Tayebi, L. (2014). 3D conductive nanocomposite scaffold for bone tissue engineering.Int J Nanomedicine9, 167-81.
Papadimitriou, C., Celikkaya, H., Cosacak, M.I., Mashkaryan, V., Bray, L., Bhattarai, P., Brandt, K., Hollak, H., Chen, X., He, S., et al. (2018). 3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity.Dev Cell46, 85-101.e8.
Bidarra, S.J., and Barrias, C.C. (2018). 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.Methods Mol Biol.
González, S., Mei, H., Nakatsu, M.N., Baclagon, E.R., and Deng, S.X. (2016). A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells.Stem Cell Res16, 358-364.
Chambers, K.F., Mosaad, E.M.O., Russell, P.J., Clements, J.A., and Doran, M.R. (2014). 3D Cultures of Prostate Cancer Cells Cultured in a Novel High-Throughput Culture Platform Are More Resistant to Chemotherapeutics Compared to Cells Cultured in Monolayer.Plos One9, e111029.
Chitrangi, S., Nair, P., and Khanna, A. (2016). 3D engineered In vitrohepatospheroids for studying drug toxicity and metabolism.Toxicol In Vitro.
Inglis, S., Kanczler, J.M., and Oreffo, R.O.C. (2018). 3D human bone marrow stromal and endothelial cell spheres promote bone healing in an osteogenic niche.Faseb Jfj201801114R.
Korhonen, P., Malm, T., and White, A.R. (2018). 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases.Neurochem Int.
Rustgi, A.K. (2018). 3D Human Esophageal Epithelium Steps Out from hPSCs.Cell Stem Cell23, 460-462.
Yin, F., Zhu, Y., Zhang, M., Yu, H., Chen, W., and Qin, J. (2018). A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier.Toxicol In Vitro.
Hong, K.Hyun, and Song, S.-C. (2019). 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate.Biomaterials218, 119338.
Jung, J.P., Lin, W.-H., Riddle, M.J., Tolar, J., and Ogle, B.M. (2018). A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing.J Biomed Mater Res A.
Jung, Y.Hwan, M Phillips, J., Lee, J., Xie, R., Ludwig, A.L., Chen, G., Zheng, Q., Kim, T.June, Zhang, H., Barney, P., et al. (2018). 3D Microstructured Scaffolds to Support Photoreceptor Polarization and Maturation.Adv Matere1803550.
Taskin, M.Berat, Xu, R., Gregersen, H.Vejersøe, Nygaard, J.Vinge, Besenbacher, F., and Chen, M. (2016). 3D polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation.Acs Appl Mater Interfaces.
Xu, K., Ganapathy, K., Andl, T., Wang, Z., Copland, J.A., Chakrabarti, R., and Florczyk, S.J. (2019). 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines.Biomaterials217, 119311.
Jang, J., Park, H.-J., Kim, S.-W., Kim, H., Park, J.Young, Na, S.Jin, Kim, H.Ji, Park, M.Nyeo, Choi, S.Hyun, Park, S.Hwa, et al. (2016). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.Biomaterials112, 264-274.
Ma, X., Dewan, S., Liu, J., Tang, M., Miller, K.L., Yu, C., Lawrence, N., McCulloch, A.D., and Chen, S. (2018). 3D Printed Micro-Scale Force Gauge Arrays to Improve Human Cardiac Tissue Maturation and Enable High Throughput Drug Testing.Acta Biomater.
Prasopthum, A., Cooper, M., Shakesheff, K.M., and Yang, J. (2019). 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.Acs Appl Mater Interfaces.
Zhou, X., Esworthy, T., Lee, S.-J., Miao, S., Cui, H., Plesiniak, M., Fenniri, H., Webster, T., Rao, R.D., and Zhang, L.Grace (2019). 3D printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.Nanomedicine.
Ma, H., Luo, J., Sun, Z., Xia, L., Shi, M., Liu, M., Chang, J., and Wu, C. (2016). 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.Biomaterials111, 138-148.
Nowicki, M.A., Castro, N.J., Plesniak, M.W., and Zhang, L.Grace (2016). 3D printing of novel osteochondral scaffolds with graded microstructure.Nanotechnology27, 414001.