Idaszek, J., Costantini, M., Karlsen, T.A., Jaroszewicz, J., Colosi, C., Testa, S., Fornetti, E., Bernardini, S., Podobinska, M., Kasarełło, K., et al. (2019). 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head.Biofabrication.
Goulart, E., de Caires-Junior, L.Carlos, Telles-Silva, K.Alves, Araujo, B.Henrique S., Rocco, S.Aparecida, Sforca, M., de Sousa, I.Layane, Kobayashi, G.Shigeru, Musso, C.Manso, Assoni, A.Faria, et al. (2019). 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro.Biofabrication.
Ardalani, H., Sengupta, S., Harms, V., Vickerman, V., Thomson, J.A., and Murphy, W.L. (2019). 3-D Culture and Endothelial Cells Improve Maturity of Human Pluripotent Stem Cell-Derived Hepatocytes.Acta Biomater.
Hong, K.Hyun, and Song, S.-C. (2019). 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate.Biomaterials218, 119338.
Xu, K., Ganapathy, K., Andl, T., Wang, Z., Copland, J.A., Chakrabarti, R., and Florczyk, S.J. (2019). 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines.Biomaterials217, 119311.
Piard, C., Jeyaram, A., Liu, Y., Caccamese, J., Jay, S.M., Chen, Y., and Fisher, J. (2019). 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance.Biomaterials222, 119423.
Prasopthum, A., Cooper, M., Shakesheff, K.M., and Yang, J. (2019). 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.Acs Appl Mater Interfaces.
Zhou, X., Esworthy, T., Lee, S.-J., Miao, S., Cui, H., Plesiniak, M., Fenniri, H., Webster, T., Rao, R.D., and Zhang, L.Grace (2019). 3D printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.Nanomedicine.
Fu, S., Du, X., Zhu, M., Tian, Z., Wei, D., and Zhu, Y. (2019). 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors.Biomed Mater.
Motealleh, A., Celebi-Saltik, B., Ermis, N., Nowak, S., Khademhosseini, A., and Kehr, N.Seda (2019). 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.Biofabrication.
Kunz, L., and Schroeder, T. (2019). A 3D Tissue-wide Digital Imaging Pipeline for Quantitation of Secreted Molecules Shows Absence of CXCL12 Gradients in Bone Marrow.Cell Stem Cell25, 846-854.e4.
Beigi, M.-H., Safaie, N., Nasr-Esfahani, M.-H., and Kiani, A. (2019). 3D Titania Nanofiber-Like Webs Induced by Plasma Ionization: A New Direction for Bioreactivity and Osteoinductivity Enhancement of Biomaterials.Sci Rep9, 17999.
Park, J.Hong, Jung, S.Yeon, Lee, C.-K., Ban, M.Jin, Lee, S.Jin, Kim, H.Yeong, Oh, H.Ju, Kim, B.Kook, Park, H.Sang, Jang, S.-H., et al. (2019). A 3D-printed polycaprolactone/β-tricalcium phosphate mandibular prosthesis: A pilot animal study.Laryngoscope.
Fairag, R., Rosenzweig, D., Garcialuna, J.Luis Ramir, Weber, M.H., and Haglund, L. (2019). 3D-Printed Polylactic Acid (PLA) Scaffolds Promote Bone-like Matrix Deposition In-vitro.Acs Appl Mater Interfaces.
Chen, M., Vial, M.-L., and St John, J.A. (2019). 3D-tips: user-friendly mesh barrier pipette tips for 3D-spheroid culture.J Biol Eng13, 80.
Ostrakhovitch, E.A., Akakura, S., Sanokawa-Akakura, R., and Tabibzadeh, S. (2019). 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-differentiation.Exp Cell Res111683.
Beilharz, T.H., See, M.M., and Boag, P.R. (2019). 3'-UTRs and the Control of Protein Expression in Space and Time.Adv Exp Med Biol1203, 133-148.
Noble, M., Tseng, K.-C.Chris, Li, H., and Elfar, J.C. (2019). 4-Aminopyridine as a Single Agent Diagnostic and Treatment for Severe Nerve Crush Injury.Mil Med184, 379-385.
Miao, S., Nowicki, M., Cui, H., Lee, S.-J., Zhou, X., Mills, D.K., and Zhang, L.Grace (2019). 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy.Biofabrication.
Tomko, N., Kluever, M., Wu, C., Zhu, J., Wang, Y., and Salomon, R.G. (2019). 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies.Free Radic Biol Med.
Han, P., Frith, J.E., Gomez, G.A., Yap, A.S., O'Neill, G.M., and Cooper-White, J.J. (2019). 5 PicoNewtons - The Difference Between Osteogenic and Adipogenic Fate Choice in Human Mesenchymal Stem Cells.Acs Nano.
Gordeeva, O., and Safandeev, V. (2019). 5-Hydroxytryptophan (5-HTP)-induced intracellular syndrome in mouse non-neural embryonic cells is associated with inhibited proliferation and cell death.Neuropharmacology107862.
Hinkle, J.T., Dawson, V.L., and Dawson, T.M. (2019). The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration.Mov Disord.
Kaifer, K.A., Villalón, E., O'Brien, B.S., Sison, S.L., Smith, C.E., Simon, M.E., Marquez, J., O'Day, S., Hopkins, A.E., Neff, R., et al. (2019). AAV9-Mediated Delivery of miR-23a Reduces Disease Severity in Smn2B-/SMA Model Mice.Hum Mol Genet.
Louphrasitthiphol, P., Chauhan, J., and Goding, C.R. (2019). ABCB5 is activated by MITF andβ-catenin and is associated with melanoma differentiation.Pigment Cell Melanoma Res.